Scaling Limits for Random Quadrangulations of Positive Genus
نویسنده
چکیده
We discuss scaling limits of large bipartite quadrangulations of positive genus. For a given g, we consider, for every n≥ 1, a random quadrangulation qn uniformly distributed over the set of all rooted bipartite quadrangulations of genus g with n faces. We view it as a metric space by endowing its set of vertices with the graph distance. We show that, as n tends to infinity, this metric space, with distances rescaled by the factor n−1/4, converges in distribution, at least along some subsequence, toward a limiting random metric space. This convergence holds in the sense of the Gromov-Hausdorff topology on compact metric spaces. We show that, regardless of the choice of the subsequence, the Hausdorff dimension of the limiting space is almost surely equal to 4. Our main tool is a bijection introduced by Chapuy, Marcus, and Schaeffer between the quadrangulations we consider and objects they call well-labeled g-trees. An important part of our study consists in determining the scaling limits of the latter .
منابع مشابه
The Topology of Scaling Limits of Positive Genus Random Quadrangulations
We discuss scaling limits of large bipartite quadrangulations of positive genus. For a given g, we consider, for every n ≥ 1, a random quadrangulation qn uniformly distributed over the set of all rooted bipartite quadrangulations of genus g with n faces. We view it as a metric space by endowing its set of vertices with the graph distance. As n tends to infinity, this metric space, with distance...
متن کاملTessellations of random maps of arbitrary genus (Mosäıques sur des cartes aléatoires en genre arbitraire)
We investigate Voronoi-like tessellations of bipartite quadrangulations on surfaces of arbitrary genus, by using a natural generalization of a bijection of Marcus and Schaeffer allowing one to encode such structures by labeled maps with a fixed number of faces. We investigate the scaling limits of the latter. Applications include asymptotic enumeration results for quadrangulations, and typical ...
متن کاملOn the Sphericity of Scaling Limits of Random Planar Quadrangulations
We give a new proof of a theorem by Le Gall & Paulin, showing that scaling limits of random planar quadrangulations are homeomorphic to the 2-sphere. The main geometric tool is a reinforcement of the notion of Gromov-Hausdorff convergence, called 1-regular convergence, that preserves topological properties of metric surfaces.
متن کاملScaling Limit of Random Planar Quadrangulations with a Boundary
We discuss the scaling limit of large planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We consider a sequence (σn) of integers such that σn/ √ 2n tends to some σ ∈ [0,∞]. For every n ≥ 1, we call qn a random map uniformly distributed over the set of all rooted planar quadrangulations with a boundary having n faces and 2σn half-edges on the...
متن کاملThe three-point function of planar quadrangulations
We compute the generating function of random planar quadrangulations with three marked vertices at prescribed pairwise distances. In the scaling limit of large quadrangulations, this discrete three-point function converges to a simple universal scaling function, which is the continuous three-point function of pure 2D quantum gravity. We give explicit expressions for this universal threepoint fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010